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ABSTRACT

The theory for the flow of a weakly ionized gas through a parallel -
plate, continuum, electrostatic preobe is developed. The flow is
separated into three distinct regions: (a) the inviscid, neutral core
where electron conduction maintains the continuity of current between
the two plates; (b) the viscous, gquasi-neutral boundary layer in which
the charged particle flow is similar to ambipolar diffusion; and {c) the
one-dimensional, collision dominated, space-charge sheath. Analyti-
cal solutions, matched at the boundary of each region, are presented
for the electron temperature in equilibrium with the gas temperature
and for the electron temperature constant at its free-stream value.

A criterion is given which may be used to determine whether electron
thermal equilibrium exists through the boundary layer. It is shown
that the sheath voltage drop comprises approximately 60 percent of the
total plate veoltage drop. The results also show a very well defined
saturation current for the double probe and that thig current ig con-
trolled by ion diffusion through the boundary layer. Expressions are
develaped from the solutions which allow the use of experimental data
to determine the free-stream electron density and temperature.
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Blasius function, ufug

Defined by Eq. (54)\

Defined in Eq. (13}

Current density

Mobility ccefficient

Defined in Eq. {(13)

Boltzmann's constant

Thermal conductivity

Plate length

Width of plates

Particle mass

Ratio of mass fraction, C/C_
Free-stream Mach number
Number density

Prandtl number, u Cp/kn
Pressure

Effective collision cross section for momentum transfer
Defined in Eq. {(13)

Schmidt number, u{pDiy
Temperature

Velocity components

Electric potential

Cartesian coordinates

Defined in Eq. (13)

Ratio of specific heats, coefficients in Eq. (24}
Momentum -energy loss parameter
Boundary-layer thickness

Defined in Eq, (13)

Permittivity of vacuum

Defined in Eq. (13)

Transformed boundary-layer coordinate (defined on page 20)
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g T/T,

A Electron-neutral mean free path

U Dynamic viscosity

v Electron-neutral collision frequency, kinematic viscosity

P Mass density

@ Intersection of the slope of the probe voltage-current
curve with Jg (see Fig. 11)

w To/T
Defined in Eq. (47)

SUBSCRIPTS

a Standard atmospheric conditions

€ Electrons

i lons

n Neutrals

o) Edge of sheath

s Saturation

t Total

w Wall

@ Free-stream conditions

Note: MKS rationalized units are used in this report.
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SECTION |
INTRODUCTION

In recent years there has been a great deal of interest concerning
the use of electrostatic probes in plasma diagnostics. Much of this
interest has been concentrated on extending the theory and use of con-
ventional Langmuir probes (free-molecular probes) to flowing plasmas.
Some of the techniques and theories for these probes may be found in
Refs. 1 and 2. These probes are practical and yield fair results when
used in a low density flow. As the density increases the space-charge
sheath becomes collision dominated and a continuum theory is required.

The term '"continuum electrostatic probe' will be used for a probe
operating in a flow regime where the sheath thickness is much larger
than an electron-neutral mean free path. The analysis of such a probe
must then include the collision dominated sheath equations.

Numerical solutions have been obtained for the nonflowing, weakly
ionized, collision dominated space-charge sheath for a spherical
geometry and for a Couette flow, Notably, the numerical solution for
the spherical probe was obtained by Cohen (Ref. 3) and Radbill (Ref. 4).
The plane sheath for a collision dominated, weakly ionized gas has been
solved by Chung (Ref. 5) for a Couette flow. The solution by Cohen is
presented as an asymptotic theory for a spherical probe in the limits of
(1) probe radius to Debye length ratio large, and (2) Ti/Te—-D for
arbitrary probe voltage. After reducing the pertinent equations for the
above limits, Cohen numerically integrated the resulting differential
equation. It should be pointed out that in Cohen's work the sheath thick-
nezs is much larger than the electron-neutrsl mean free path. Radbill,
through a different numerical fechnique, extended the solution for the
sphericzl probe to include arbitrary probe radius tc Debye length ratio
and arbitrary potentials, The solutions of Cohen, Radbill, and Su and
Lam {Refs. 3, 4, and 6) all agree in the regions where the parameters
of interest are equal. One feature that is worthy of note in these solu-
tions is the failure to obtain a saturation current. A possible explanation
of this behavior is the penetration of the electric field into regions far
away from the probe. Since the analyses have been for a nonflowing
plasma the field penetrates farther with increasing probe potential in
order to maintain continuity and there is no sharply defined space-charge
sheath edge. The solution of Cohen served as a basis for an analysis of
a flowing plasma over an arbitrary body by Lam (Ref. 7). In his analysis
Lam investigated the probe characteristics for a model very similar to
that Chung used in his analysis of the Couette and stagnation point flow.
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Although Lam's solution is for an arbitrary body it has to be restricted
to a three-dimensional geometry for the limiting case of zero velocity
since steady-state two-dimensional solutions cannot be obtained unless
charge is supplied from some source. Both Lam's and Chung's solutions
show that the electric field penetrates far into the flow, and it is neces-
sary to include a region of near ambipolar diffusion which is matched to
the nonconvective sheath. Lam's analysis was for an incompressible,
isothermal plasma with constant properties while Chung and his co-
workers have included compressibility (Refs. 8 and 5) and possible elec-
tron thermal nonequilibrium (Refs. 9 and 10). Other pertinent analyses
for the stagnation point probe may be found in Refs. 1, 11, and 12 which
are all similar to Lam's and Chung's work in their method of analysis.

In this paper the analysis is of a double, parallel-plate probe with
the method of solution foliowing that of Chung and Blankenship (Ref. 8).
Analytical solutions have been obtained for the complete problem and the
results verify the numerical work of Ref. 8. Justification is given for
obtaining both an electron-neutral thermal equilibrium and frozen electron
temperature solution. In Ref. 8 these are obtained; however, an ihcom-
plete form of the electron energy equation was used, and justification for
the frozen electron temperature solution is not correct. An approximate
relation is given here for determining electron thermal equilibrium by
considering a balance of collision losses and the thermal conduction of the
electrons. Relations are given which enable the results to be used with
experimental data to yield infermation concerning the free-stream elec-
tron number density and temperature. Of particular significance is the
approximate analytical soluticn cf the collision dominated, plane sheath
equations for arbitrary values of the parameters of interest.

SECTION Il
FORMULATION AMD BASIC ASSUMPTIONS

Many of the electrostatic probe theories developed have been for
spherical geometries. Since it has been shown by Lam (Ref. 7) that the
electric field penetrates far from the probe, spherical symmetry was
necessary to attain undisturbed conditions far from the probe. Similar
to the spherical probes is the stagnation point probe proposed by Tabbot
{Ref. 11). The inherent difficulty in all of these probes is obtaining free-
stream properties ahead of the bow shock from the probe data.

Because of the problems discussed above, the author initiated a
study of a double probe consisting of two parallel plates. Independent of
this Chung and Blankenship (Ref. 8} published a numerical solution of the
same geometry.
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This type of probe offers several advantages. The parallel-plate
geometry provides two very distinct electrodes for a very definite de-
scription of the voltage drops. With the plates at close proximity to
each other, the electric field is nearly normal to the surface every-
where and Poisson's equation is essentially one-dimensional in nature.
The plates may be diverged slightly to account for the boundary layer
buildup so that the strong shock problem may be either eliminated or
reduced greatly. '

The formulation will be based on the following assumptions:

1. The ordinary viscous boundary layer will be analyzed with a
zero pressure gradient.

2. The charged particle number densities are nearly equal in the
inviscid core and outer portions of boundary layer.

3. The sheath (where charge separation occurs) thickness is much
smaller than the beoundary-layer thickness and much larger
than the electron-neutral mean free path.

4. The flow is assumed to be frozen in icnization and recombina-
tion. (Calculations are given which show the approximate
range of validity for this assumption.)

5. The ions are in thermazl equilibrium with the neutrals in all
cases {Tj = T} and K;/K; is assumed constant.

Within the framework of the above assumptions the neutral gas equations
become:

Overall continuity:

—_— 4 e =0 (l)

Overall momenturn:

ou du _ 3., 2u (2)
PUFx T PY 3y T aw(H 3y)
Neutral gas and ion energy equation:
2
oT 3T _ 9 3T 2u (3)
The conservation equations for the charge particles become:
Conservation of ions:
aci BCi 3 aci ] (4)
PUIx * PV I T 3y |PPiosy - PKCGE
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Conservation of electrons:

ac aC
pu _E + pV _E =
ax oY

cC.T

3 T 3 e e
55 [pDe T W( - )+ pKeCeE] (5)
Electron energy:
aT cC T
C T [<! e e
puCpe Ce;"' [pvce - pDe"I’;'a_f( 7 ) -pKeCeE]
c BTe . @ E 2 . BTE)
Pq 3y Me 3 € oy
3 Me (6)
* 38 Ve Rk (T - T

Poisson's equation:

e ep Ci Ce
== (n. - n ) = =7 _— = T
eo i e Eo Mi Me

JE

3y (7)

The analysis is broken down inte three regions (Fig. 1). The first
is the inviscid neutral core in which the electric field is constant and
the charged particles are delivered to the boundary layer because of
their mobility and convection. The second region is the outer portion
of the viscous boundary layer where nj = ng and the flow is characterized
by diffusion similar to ambipolar diffusion. The third region is the
space-charge sheath in which n;j # ng and the convection can be neglected
in the equations of motion.

SECTION 1lI
SOLUTION TO THE PLANE SHEATH EQUATIONS

Analysis of Eqs. (4} through (7) is very difficult when nj # ne, but
the complexity of the equations is greatly reduced if the convection terms
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are neglected. In the outer portion of the sheath where quasi-neutrality
is attazined, the convecticn does not contribute to the net current to the
wall, The region where charge separation occurs is very much thinner
than the viscouns boundary layer, and convection becomes negligible.
Therefore the convection terms will be neglected in the sheath, and the
equations reduce to those of a plane, collision dominated space-charge
sheath.

As pointed out in Ref. 9, thermal nonequilibrium may exist between
the electrons and neutrals in the boundary layer and sheath. It ig shown
in Section IV under what conditions this might occur in argon and air.
There are two limiting conditions which cover a wide range of actual
flows: equilibrium electron temperature (Tg = T) and frozen electron
temperature {T_ = To ). Hence, the sheath equations will be solved for
these two extremes. TUnder these conditions the electron energy equa-
tion becomes extraneous, and the plane sheath equations are:

3C.
—g——[DD.——l—oKiCiE]=O (8)
¥ 1 dy
C T
3 T a ( e e =0 q
a—y[pDeT_eT '"“T—)"'pKeceE:I (9)
36 _es | ‘1 _ % (10)
3y ®o Mi EE
The first two of these equations may be integrated to give:
e aci (11)
— |lp D, — - p K.C.E|= ],
Mi i 3y i1 i
cC_T
e T 3 e e —
m;["”e?;—y( T )+pKeCeE] g (12)

where both currents are taken as posgitive for particle drift toward the
wall. Since the equations are identical to those analyzed numerically
in Ref. 8, the same notzation will be used and the following parameters
defined:
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y . 2
_ Ci,e _ 1 p -~ ']iAPo s
a. = € = = — dy Jy = ————
i,e C IS Po 1 en, pu
i,eo 5 e]
¥
o eZ neo &2 .
A = P_ gy A = R = _9
Po Eq k Ty e neo )
0
j K,
k= J;E — (13)
J; Ke
Substitution of Eq. {13) into Eqs. (10} through (12) gives
da,
—2 ARa, = J; {14)
dg
d -
— (a_w) + ARa_ = J, k (15)
ac e e 1
dR .
dg

In normalizing the above equations, it has been assumed that
nj = ng,. Equation (16) shows that this is not exactly true (aio # aeo)

since the electiric field is decaying through the sheath, However, to the
first approximation {(quasi-neutral approximation) this is correct so that
the boundary conditions at £ = 1. 0 are taken as

The boundary conditions at the wall (£ = 0), although not exact, are
taken as

A discussion of these boundary conditions is given in Section 3, 1.
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Fquations (14) and (15} can be integrated formally to give o; and o
as functions of the normalized electric field R and the independent
varizhle §.

C
g ¢
ai = exp [ f AR d§:| . f Jl exp [—f AR dC dc (17)
0 o
o
¢
g G
aE:i expli—f i—Rdg]- f Jll'iexp f %dgi\dc
a o
o (18)

The quantity Jq contains the factor S/pu and is weakly dependent upon

the temperature. Since the main contribution to the integrals is near

the wall and the temperature does not vary greatly acress the thin sheath,
the ion Schmidt number is assumed constant through the sheath and equal
to its value at the wall. This means that J1 will be taken as constant
through the sheath and equal to its wall value,

If the correct relationship between R and §{ were known, the inte-
gration of Egs. {17) and {18) could be carried out to yield the solution
since w is a known function of £. The exact form of R requires the
solution of the equations to be known; however, a reasonable approxima-
tion to R will give an approximaticn t¢ «j and @¢e. These expressions for
ei and g in turn could be substituted into Eq. (18) and integration would
provide an improved approximation to R. This procedure is simply the
method of successive approximations and is commonly used in solving
nonlinear differential eguations. The practical success of this method
depends almost entirely upon being able to obtain a very good first
approximation to the function in question. The choeoice of the first approxi-
mation will be considered when treating specific cases.

Two cases will be solved which are of interest: (1)} equilibrium
electron temperature, and (2} constant electron temperature,
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3.1 EQUILIBRIUM ELECTRON TEMPERATURE

The condition of the electron temperature equal to the ion tempera-
ture gives v = 1. 0. Equations {(14) and {15} may then be added and
combined with Egq. (168) to give

J, (1 + k) {19)

d dR
E(ai+ae)-ARE 1

Integration of Eq. (19} yields:

A 2 -
(@, +a) -2-3 R -R%H =7, A+ -1 (2

where the subscript o denotes conditions at § = 1.0, Eguation {20} is
an exact algebraic equsation between all the variables of the problem.

Subtracting Eq. (14) and {15} and using Eq. (16) gives:

2
d R - i
F - AR (a, +a) =J, (1 -Kk) (21)

This equation aleng with Eq. (20) represents a second-order, nonlinear
differential equation for the electric field R. An approximation to R is
obtained by neglecting d2R/dt 2, which from Poisson's equation implies
dae dai
—_— == (22)
dc d¢f

In the outer portion of the sheath where the flow is quasi-neutral,
aj = @y and Eq. (22) is a good approximation. As the wall is approached
the electric field becomes stronger and the ions become mobility limited
such that dei/dt becomes very small. The electrons are being repelled
by the electric field and their density becomes low. From Eq, (15) we
have

dae
— =~ - AR ¢ >0
d¢ €

for “e = 0,

Therefore, the second derivative of R is small over a large portion of
the sheath,

Making the approximation of Eq. (22} in Eq. (21} gives:

Iy -
(ai + ae) - ;IE (1 - k) (23)
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It should be noted that Eq. {23) at § = 1.0 gives the same quasi-neutral
field as that obtained by letting o = @ in the outer region of the sheath.
This field is discussed by Chung (Ref. 5) as becoming asymptotically
correct for large A, Substitution of Eq. (23} into Eq. (20) gives:

N -1 2
C~ry-¥vg R - -rzR (24)
where
=1 - 2 . ___ARG?
1 I+ R 20 A+ ok
1,1-Ek
72 ) ( 1+ k )
Yo = 2
3 20, 1+ &)

Equation (24} is an approximate expression for § in terms of R. A
comparison of Eq. (24} with a numerical solution from Ref. 5 is given
in Fig. 2, where Jq and k were taken from Ref. 5, and shows that the
approximation to R is in fact quite good. The highest order derivative
of R has been neglected and two constants of integration have been lost.
The result is that Eq. {(24) does not satisfy allthe necessary boundary
conditions.

There is an Important feature of this solution which will be utilized
in the constant electron temperature solution and can be discussed at
this point. Since the electric field at the probe surface is large com-
pared to its value at the sheath edge, the ions tend to become mobility
limited near the surface. This means that physically it is the drag force
between the icns and neutrals that retards the ion motion and that the
concentration gradients are no longer important in determining the par-
ticle flux. Egquation (14) shows that for this condition we have

1 (25)

for the surface boundary condition {({ = 0). The approximation in Eq. {23)
gives at £ = 0

a, + o k—KR_(l-k) (286)
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which, for the range of k of interest, is very nearly equal to Eq. (25).
It was pointed out previously that Eq. (23) becomes asymptotically
correct at £ = 1.0 for large A; then in view of the above discussiocn,
the approximation in Eq. (23) can be expected to be quite good through
the entire sheath, and making ef, = 0 causes only a small perturbation

in the electric field near the probe surface.

By substituting Eq. (24} into Egs. {17) and (18), with w = 1.0, and
integrating we have

roh 0 1/3
- et 23)
a, = - J, t e _—
1 1 342
t
(A;sf2 + 1) “
7oA ~
f [_2 + 1] t 3 e~ t dt (27)
t 3t
w
YA
-2 oy . 1/3
a = -J.k t 3 e ( ﬁ)
e~ Y1 342
t
A‘yz -1
f ‘:?_er 1t 3 t
3t e  dt (28)
t
w
where
a =0 = a,
Cw w
and
3
27'3AR
t = -
3

10
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Equations (27) and {28) may now be made to satisfy all the boundary
conditions at { = 1.0 and € = 0 by evaluating the constants (J1 and k) in
the equations. Insiead of specilying the current or voltage across the
sheath, the ratio of currents (k) will be chosen as the parameter; then
J1. Ry, and R, will be found by solving the system of equations corre-
sponding to Eqs. (27) and (28} evaluated at { = 1.0 and Eq. (24) evalu-
ated at { = 0.

Equations {27) and (28) may be integrated in terms of the general
Kummer function; however, it is possible in most cases {o make
approximations consistent with the values of the parameters of interest
which permit these integrals to be expressed in simpler forms. Such
approximations and the corresponding integrals are shown in Appendix II
(Egs, (1I-10), (II-11), and (II-12)},

3.2 CONSTANT ELECTRON TEMPERATURE

A constant electron temperature means that w is not constant so it
is not possible to derive an approximate expression such as Eq. {24},

Examination of Eqs. (17) and (18) shows that the ion equation has
the same form as in the equilibrium case and the electron equation has
been changed by the appearance of the gas temperature. It may be ex-
pected from the form of these equations that the functional form of R and
of the preduct R/w cannot be very much different from that of the equi-
librium case as given in Eq. {24). Therefore, the functional form of ¢ as
given in Eq. (24) is taken =zs the first approximation relating ¢ to R,

-1 2 (29}

The coefficients (v's) in this equation are not the same as those in Eq. (24)
for the equilibrium solution. These coefficients are found by requiring
that the approximation for R agrees with the true R at the end points and
requiring the slope at the wall to be that given for the ion mokility limited
condition. These requirements yield the following system of equations:

_ -1 2
O =7y - 7Ry T - ¥sR,
-1 2
1.0 =7y - 7oR, 7 - r3R,
AR
(d_g)za —— = - Y = R - 2Ry
R/ % - % 3,0+ B

11
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Solving this system of equations for v1» e, and yg yields:

2
_ AR, 3 Vo (30a)
17 = " ZE_
2J1(1 + k) w
. — 2
" 2J1(1 + k) R
L - 3 - Oz ]
2
AR AR R
yg = w R ~ w w {30b)
— o - 3
20, (1 + k) 3 R, 1 R
1 -2_92,2_9
9 RW 2 R 3
L W
A N 2 {30¢c)

- = 3
2Jl(1 + k) sz

Since the sheath is thin, a linear variation in the gas temperature will
be used.

11
1.1 {ew+ I g]. (31)
w oW

Using Eqs. (29) and (31) the resulting integration of Eq. {18) cannot

be carried out in a closed form. Let F be defined by

8 -0_)
a¢ _ - ‘Yo w -1 2 -2
T e U1t R oy RGBT - 2 R)

Eilr
o,

W -2

An approximate expression is now chosen for F such that Eq. (18) may
be integrated. We will use a curve fit to F of the form

-2
F ~G= BzR - 283}'{ (32)

Since the main contributicn to the integral in Fq. (18) occurs near
£ = 0, G will be made to agree with F at £ = 0. Also, since F appears
inside the integral of the exponent, G will be made to agree with F on

12
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the average over the interval of integration. These conditions corre-
spond to

i

F) G

(=0 £=0
and
R R
o o
FdR = GdR
Rw Rw

The resulting values of the constants are:

= 2
. _leo + Sw]2Jl(1 + k) ) R0
6. AR 2 R 2ew Asz sz
8 = w w o —
2 23.(1 + k) w R R 2
1 o0 1 - §_ fa] + l )
2 2 3
- w w
5 - A Bw 82
3" = * 3
2J1(1 + k)mm 2RW

Substituting Eq. (29) into Eq. (17) and Eq. (32) into Eq. (18) and inte-
grating gives:

Ar 2y  1/3
- _ 3 t 3
‘Il J1 t € ( 3A2)
t
A72+ 1
7ol -——
—2-—+ 1 t 3 et dt (33)
3t
t
W

13
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- AB B,t
.2 -3 . 1/3
J kt ‘}5;{ e ”3 (ﬁ)
t
A82-1 Egt
oA 3 v
2 1t e "3 dt (34)
3t
tw
2y,A
where t=-—?1— R3
3

Another relation besides Egs. (33) and {34) is needed in order to
determine the three unknowns, J1, Ry, and Ry. This relation may be
derived in a manner similar to that used in obtaining Eq. (20). Adding
Eq. (15) to Eq. {14) gives:

a (2, + a, @) - AR(a; = a ) = J,(1 + &) ‘ (35)

dg

Substituting in Poisscon's equation and integrating gives:

A -
(a; + @y 0 = (1+a) -2 (82 - Ry2) = 3,1 + BY(C - 1)(z)

The complete sheath solution is now obtained by letting k be a
parameter and solving the three equations obtained by evaluating Eqs. (33)
and (34) at £ = 1.0 and Eq. (36) at £ = 0 for the three unknowns, Jj, R,,
and Ry,. Having obtained these unknowns, Egs. (29), (33), and {34) can be
used to compute distribution of the quantities across the sheath. Approxi-
mations to Eqs. (33) and {34) are given in Appendix II [Eqs. (II-18),
(II-17), and (II-18)] which makes the sheath solution more amenable to
numerical calculations.

3.3 SHEATH VOLTAGE

The sheath voltage can be found by integrating the electric field

Yo Yo

[

Vw Q
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which becomes for the sheath quantities
1.0

L. e _
I;T——- (VO—VW) = —Af 3 R d€ (37)

=3

(o]

Using the linear variation for 6 from Eq. (31}, the voltage becomes

1.0
e
F(vo_vw)=-A(rﬁo-.ew)f ¢ R dC
o
1.0
- A0, '/‘ R d¢ {38)
0

which may be integrated using Egq. (24) for R. Finally, we have the
following expression for the sheath voltage:

R
e _ o)
S (v, -V) - -A (8, -8) [7‘17’2 tn 0
].-:Tm RW
+;/22(1__1_)
R, R,
2ryr YooY
Y3, 3 3 273 2 2
- ® -2+ F3@?2_r? (39)
3 2
2
2y R
y (R5-Rw5)]-Aew[y24,n_°
5 R
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where the v's are given in Eq. (24) for the electron equilibrium case and
in Eg. (30} for the constant electron temperature case.

SECTION |V
BOUNDARY-LAYER SOLUTION

The region in the viscous boundary layer but outside the space-
charge sheath is quasi-neutral (n; = n.). Observing this it is possible
to eliminate the electric field from Eqgs. (4) and (5) to give,

ax Ay

E_[pDi K, K, om

K, K + K_ 3y

ODe Ki Ke T 3 m Te
' K. K + K (T;_)'S; T )] o

C .
where m = — and m; = m_.. Since
C 1 €
w

K. M 1/2

1 -~ ( _& )
K, My

then K; << Kg and Eq. (40) becomes,

T
ou 3, oy dm_ 3 puié_[m(“_e)“ (a1)
X 3y 3y oy T

which is the convection-diffusion equation for the charged particles. It
can be seen that Eq. (41} is similar to the neutral gas energy equation,
and similar solutions may be found under certain assumptions. Before
looking for similar solutions it is necessary to look at the electron
energy equation since Eg. (41} is coupled to it.

16
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4,1 DETERMINATION OF ELECTRON TEMPERATURE

Equation (6) can be written as:

oT

3 CT
Enllcu-—--—':'i+[nel\.’tﬁt.r—pDeT—— (ee) —pl{eCeE]
2 ®  ax T, 3y T

3
[ék_aEﬂ_E] 22 (o)
a 2 e
M, 3y M, 3y 3y
3 Me
where Ref. 13 gives,
L o 15k (CeTe) (&)1/2
€ 4 M T M
e e

Since the diffusion velocities are small, these terms are neglected and
Eq. (42) reduces to,

aT aT
-s-nku—e+§nkv—e-

2 € Ax 2 ©  ay

M

e 3 e

k + 28w —nk (T -T (43)
(eay) 2 ey €© €

The last term in this equation is similar to the source term in the con-
servation of species in reacting boundary layers. In order to get
similar solutions for Eq. (41) it is necessary that T, can be expressed
in a similar solution. It is obvious that if the collision term dominates,
then T, = T and Eq. (41) has similar solutions. Also, if the collision
frequency "is smazll so that the cellision term is negligible, then the
electron temperature is frozen through the boundary layer. Similar
solutions are again possible for Eqg. {41) since T can be found from the
solution of the neutral gas energy equation., This case is dilfficult to
gsolve in general since the equation is highly nonlinear. The possibility
cf electron thermal nonequilibrium is known and has bkeen investigated

17
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for a stagnation point probe by Chung and Mullen (Ref. 10). Similar
solutions might be obtained for Eq. (43) if some type of variation in
the gas properties were allowed.

Let us assume a constant electron thermal conductivity and write
Eq. (43) as;

2
G e, e _auTe n (M2OT,
dx dy 2p 07 M, dy2
3 M
+ 2 aue_“" (T, - T (44)
5 M

In order to determine the important terms in Eq. (44) we define,
T
To= 1' "= i‘ ' = .‘T__
y L Te i T T

where, in the usual order of magnitude analysis,

u' ~ 0 [1] xt ~0 [1] T, oo
: 3

~ e
v~ 0 [8g] y'~0 [85] T oo~ 0
2 . 3. 1
ax' 0 [1] ay! 0 [-5;]

and 6g is the viscous boundary-layer thickness. The order of magnitude
cf the terms in Eq. (44) are then,

1 [ ] 1/2 2
| 3T, J 3y fow 3T,
u + v = = I
3x ' ay! 2 Rg e ayrz
M
3 L e
+ S8y = E (T ' -T) (45)
5 c um M e
1/2
(1) (1) + (3p) —1—=-l-(:“_) L
(3g) R M, (65%)

+ collision term.
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The thickness cf the viscous boundary layer is

5B~0< T S
ﬁ

e

b

so the electron thermal conduction term is of order

M 1/2
O(E)

compared to unity for the convection terms. The magnitude of the col-
lision term depends on the energy exchange between the electrons and
neutrals. Equation (45) is essentially a balance between the thermal
conduction and the cellision loss terms and can be written as:

M
e _ 3 e
k ———Gve—-—-nek(Te-T)

ay2 2 M

(46)

When the right side dominates, T, = T; when the right side is negligible,
Te = constant through the boundary layer. To develop an approximate
criterion for electron thermal equilibrium we let

BzTe _ TeDm - Tew _ (Te,-Do - Tew) "

ay2 5.2 25 x2 ®x

Equation 46 then reduces to

T 1/2
e
w1 {(1 -9) + [ - n)2 + 4new] } (47)
T, 2
where
o - w
w Tm
3/2
10 8v_x0 M x6Q P
g == ¥ (_€) _7.15%102 B0 _=g
u M M P ¥
o co a
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Equation (47) is shown in Fig. 3 for two representative wall tempera-
tures. The magnitude of ! depends on gas flow conditions and the type
of gas being used. For argon § =10 andQ., = 7 x 10-21 m2, and for
nitrogen or air & probably lies between 10 and 100 and Qen = 10719 m?2,
Using the typical flow conditions of T, = 4200°K, p_, = 0.1 atm; M_ =1,
and 8, = 0.1 - 0.3 the corresponding values of §? for argon and air are
shown. It is shown that for argon the electron temperature is nearly
constant and for air {§ = 100) the electron temperature is nearly in
thermal equilibrium with the gas. Hence, the two extremes of equili-
brium T, and constant T, are very representative of many flows of
interest. It should be pointed out again that these expressions were
developed under the assumption that the ionization and recombination
are frozen.

4.2 SOLUTION FOR THE CHARGED PARTICLE CONVECTION-DIFFUSION EQUATION

Equation (41) can be solved approximately for the two cases of the
electron temperature if the quantity m is assumed to vary slewly along
the edge of the sheath. The equation can be transformed by

y
u_ 1/2 .
ne= ( ) f — dy
2v x o}
[+ -] o
o
¥ = (2uyv 02 ()
PV . _ 3%, pu_3y. df _u
P, 3X e Yy dn u
and letting ppLI = 1. 0. Applying this transformation yields
a (l __d(mg)) - (48)
dn S dn dn

where g = (1 + w}. The boundary conditions on Eq. (48) are

m (w}) = 1.0

m

o (no) o

where ng, is the sheath thickness.
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Fquation (48) can be written in the following form:

d_ [1 d(mg)],+ £dmg) _ . din g (49)
dn LS dn g dn dr

For equilibrium electron temperature the right side of the above equa-
tion is identically zero. For constant electron temperature g becomes
a function of the gas temperature and the right side can, in general, be
neglected. Neglecting the right side of the above yields:

E;_[l Eimgl] L I dmeg) _ (50)
dnLs dn g dn

which iz to be used as an approximation to Eq. (48), Integration of
Eq. {50) gives

y St
22 d
_fg
Se dn
ﬂO
mg = mg + (g, -mpg) - (51)
ST
2> d
_ Jg o
Se dn
1']l.'}

The exponentizls in the integrand of the above equation have their largest
contribution near the wall and decay as n increases. The same type of
behavior is seen in Appendix III in the approximate solution of the Blasius
equation. It is shown there that reasonable approximations can be ob-
tained by using the correct behavior of the exponentials near the wall pro-
vided that S and g do not vary greatly. Therefore the following approxi-
mations are used in Eq. (51};

5 = Sw;
and
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This gives,
£ 8 e
[ (3 = ) - (B 32 )
mg = mg + (g, - meg) ) P
P(3)- (L )

(52)

The solution for the equilibrium electron temperature can be obtained
by letting g = 2 everywhere in Eq. (52).

The order of the approximation made to Eq. (48) by Eq. (50) can be
evaluated by formally integrating Eq. (49) and comparing the terms. It
can be shown that if the following integral is much less than unity the
approximation is good:

n "
ST an -/ S oan
1 mf dg o & Se o
€ g dn
o n

o

I:

To evaluate I we let

and from Eq. (52)

The term neglected is on the order of 10 percent or less since g_ > 2,
hence Eq. (50) is a good approximation to Eq. (48).

Equation (52) will be used in the matching of the boundary layer to
the sheath at the outer edge of the sheath,
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4,3 BOUNDARY-LAYER YOL.TAGE DROP

The electric field has to be obtained from the species equations,
since to the first order nj = n, and Poisson's equation gives no informa-
ticn about the electric field. If we observe from Eqs. {4) and (5) that
the convective porticns of these are equal we obtain an equation which
may be integrated from the edge of the sheath cutward. This can be re-
duced to the following expression for the electric field:

gl [‘_’1 (E) @_a_(m’fe))
m LK, \K 3y 3 T

o v
o_ KT u 12 g
' ~p—-— :’ (Zv:x) (é)m J] (53)

where the integration constant has been taken to be J = J(x). The J is
evaluated by considering conditions at the edge of the sheath where the
effects of charge and separation and convection are small; with Eqs. {11)
and (12) J is found to be

1/2
J= 2 (2:{) G_ -3 (54)

e 1

e o oo

The voltage drop from the edge of the sheath to the edge of the
boundary layer, n = ng, is given by the integration of Eq. {53},

Mg Mg
K 2
E—(va-v)=-(—i) g DM 44 g f & an
KT © Ko/ dn m
nO nO
Mg
+ L] (M) dn (55)
. m dr
nD
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For the equilibrium case w = 1 and Eq. (55) becomes

Mg

M 1/2
e 8 dm e
g (v, -V = 2 2an+o |2 5
KT_ 6 ° m dn [( ) ] (56)

To evaluate the integral we shall use @ as given by the compressible
flow solution with Py = 1, which is (Ref. 14),

=0 + (1 -8)f' + 2= yp2 e (1 gy
w W oo

2
where
L
£ u_
Then Eq. (56) becomes,
E (V. -V)=-9 4nmn
8 o) w o

kT

©a

+ [(1—E)+L—-M ]f—i—q-flldﬂ

e (17w

The largest contribution to the remaining integrals occurs near n = ng

I

dm
since —1 and an decays exponentially as n—ng;. Therefore any

approximations made in the evaluation of the integrals should be very
good near n,. Expansion of Eq. (52) for n near p, gives

S 1/3
w
m=m0+(l-m0) f""'”(;) (‘r‘]-ﬂo)
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where we have used

r(l)(s) "t

which is consistent with the approximate evaluation of Eq. {52).
Also, )

F)

£’ = £.n+ 0(n?)

If m, << 1 and ng << 1 then

over most of the range of integration. The first integral in Eq. (57)
becomes

-

ns
(1-ew+7"1mm2) £ dm 44
2 m dan
no

2 1/3
“(1-a o0 ) (2)
and the second integral becomes
g
_7'-1M2f f'z_d_n1_=_,_y—1M2(2_)2/3
2 ” m dn 4 T Vs,
o

Numerical integration of a few cases has shown that these approxima-
tions are very good. Finally, the eguilibrium boundary-layer voltage
drop becomes

) 1/3
ﬁ;(vb V) = -6 inm_ + (I_SW+%1MN2)(2—W)
-1y 2 ( 2_)2/3 (58)
4 s,
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W
The nonequilibrium boundary layer with w = 70-5’— in Eq. (55) can be
integrated directly to give

m Me
i—(va-vo)“-wm{,n—g-ro —= {39)
kTm 8 Mi

o

Edquations (58) and (59) will be added to the sheath voltage drop to give
the complete boundary-layer voltage drops.

4.4 INVISCID CORE YOLTAGE DROP

In the inviscid region we have from Eq. {53}
1/2

_ o o i (60)
. e ’ ( 2vmx ) y

‘The voltage drop between the two boundary-layer edges is

( Ve1 - Vez ) - - ~/. Edy ~ - E_ 4

%

where £ is the distance between the plates. Hence, across the inviscid
core
1
e 4V v A IS
£ (Ve1 - Vs2) = - J(—) (—-—) LT {61)
kT 2x Y K

o] o
eDD

If the integration in Eq. (61} is from the more negatively biased plate
toward the more positive plate, the voltage drop in Eq. (61) will be
positive.

The voltage drop across the inviscid core may or may not be negli-
gible with respect to the total probe voltage. The voltage drop between
the plates, neglecting the inviscid core, (Vg1 - Vo), can be written as

e c‘DS

o ( Vo1 - Va2 ) - ;7 (62)
© s
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It is shown in Section V1 that

Tem
2.10 ~——
c'QS — Tm
o T
e S. T 1/3
S 1+ —= )£y _w ¥ )
TOD TW + Te
so that Tem
. 2.10 -T—;—
—_— -V == J
kT ( w1l Wz) Te S. T 1/3
1 4+ a— £ W
T A T + T
® W e
o
Therefore
[(Vﬁ-l - Va2 )] << [(le - sz)]
whenever
Teoa
i 1/2 u_t 1/2 3 Tm
o = << 10
( 2}{) ( v ) T 1/3
o e 5. T
1 + =] LR -
Too T + T
w e
{63)

and the inviscid core voltage drop may be neglected. When this inequality
is not satisfied, Eq. (61) may be used to compute the inviscid core voltage
drop and it must be included in the overall probe voltage,

SECTION V
MATCHING OF THE SHEATH AND BOUNDARY LAYER

Solutions have been given for the sheath and boundary layer; it re-
mains to match these at the edge of the sheath to complete the solution.

In matching the boundary-layer solution to the sheath solution, three
conditions can be specified. These are taken te be that the electric field,
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the number density of charged particles, and the electric current are
ail continuous at n = ng.

The continuity of current has already been assured by the choice of
the integration constant in Eq. {53). By comparing Eq. {54) to Eq. (13),
this corresponds to

m, S, je
J = J1 — - 1] (64)
Ji

w

which is the form to be used here.

The continuity of the number density of charged particles has been
assured by specifying that o; and e, are unity at the edge of the sheath,
By comparing Eq, (53) with the difference between Eqs. (11) and (12},
it is found that the electric field is continuous provided the quantity
%ﬁm_ is continuous at n = n,. This will now be done for the two cases con-
sidered.

For the boundary-layer solution, we have from Eq. (52)

dny _ 1 (dimg)y _"o sdg
() - L) - (%)

o (o] o o
1/3
- (5 s 2wy Do (g
(go mO)fW(gw) go(d")

The sheath conditions can be expressed from Eq. (35)
(EIE) g o a+® Mo (dw)
g

dn 1 n g dn

a] o o O 0

where o , ap =1.0and 1+ Wg = 8o have been used. The last terms of
o o

the above equations are identical; the matching of the derivatives at
n=n, then gives

J mD (1 + E) ( gm ) ¥ “ ( SW )1/3 (65)
—_— - 7 = —_— - m —_
! nO g'O go ° Y gW
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The nondimensional current from Eq. (64) then becomes

g m g L .8 K, ~!
I (1- o0 Y () Ser [IE (_-1) -1] (686)
1+ k g, By Sw Ke .
Introducing the parameter
e nem 2vmx
a =
e kT u
[=~] o
into the solution we have the relation
A 2
; - mo no (67)
Substituting Eq. (67) into Eq. (63) gives
= 1/3
3 A €o _ Jl(l + k) A 1 Bw Sw (68)
no 1 - _———-2- - - . ( - ) o
A B Mg g, a I S, S

from which the sheath thickness can be found for a J1 and k from the
sheath solutions. Equation (68) contains a term with g, which is a
function of n,, however this term is usuzlly negligible. For equilibrium
gy = 2 and for constant electron temperature

oca

g0-1+_

0
o

Wwhere
- - Yy - 1 2 "
90 ew + { (1 Ew) + _2_ Mac } fw N,

For a given set of the parameters a, 4, k, S, W, and 8., the current and
voltage through the boundary layer are found.

SECTION ¥
RESULTS

Analytical solutions are given for the flow of a wezakly ionized gas
between two conducting plates. The solulions are given for the particular
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conditions of {1) equilibrium electron temperature, and (2) constant
electron temperature through the sheath and boundary layer.

Typical sheath solutions for the charge particle density and electric
field profiles are shown in Figs. 4 and 5. Figure 4 also gives a com-
parison with an exact numerical solution for the same set of parameters
and assumptions as taken from Ref. 5. The agreement is very good.
This same type of agreement was found for the entire range of param-
eters given in Ref. 5, indicating that the analytical solution is valid over
the entire range of parameters of interest. Figure 5 also gives a com-
parison with an exact numerical solution of the nonequilibrium sheath as
given in Ref. 8. The analytical results are for a constant electron tem-
perature and a linear gas temperature profile while the numerical results
included an approximate electron energy equation and solved for the
electron temperature. The agreement between the two solutions is very
good despite the assumed constant electron temperature in the anzalytical
solution.

The sheath voltage as calculated by Eq. (39} for an equilibrium sheath
is shown in Fig. 6. An isothermal and a linear gas temperature profile
are shown in order to give the effect of compressibility on the sheath
voltage., Direct comparison with the numerical solution from Ref. 5 is
again made for the isothermal sheath, and the agreement is very good.
The effect of the density variation is to decrease the voltage required to
produce a given current. Since the electrons are in equilibrium with the
gas, their energy is decreasing through the sheath. Therefore, it takes
less voltage to decrease the electron current and keep the same net current.

Having demonstrated the validity of the sheath solutions, they are
matched to the boundary-layer solution to give the complete solution. Typi-
cal profiles of the complete solution are shown in Figs, 7Ta and b. It can
be seen that the constant electron temperature sheath is thicker than the
equilibrium sheath. The electric field decays very rapidly through the sheath
with the value at the edge of the sheath being approximately one-tenth the
value at the wall.

4

Although the electric field is weak in the boundary layer, the voltage
drop is not negligible because of the much larger distance involved. This
is illustrated in Fig. 8 which-shows the sheath and boundary-layer voltage
drops for the case of a constant electron temperature and an equilibrium
electron temperature. The voltage drop across the sheath is seen to be
approximately 60 percent of the total. Figure 8 also shows a very well de-
fined saturation current for the probe. The equilibrium boundary-layer
voltage is a function of the free-stream Mach number through the gas tem-
perature dependence. Equation {58} shows that boundary-layer voltage
drop increases with increasing free-stream Mach number.
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The sheath thickness increases with a decrease in the free-stream
electron density since the sheath thickness is characterized by (not
equal tc) the Debye length which increases with a decrease in electron
density. This variation of the sheath thickness with e (nem is pro-

portional to the parameter a) is shown in Fig. 9. It is again noted that
the constant electron temperature sheath is thicker than the equilibrium
electron temperature sheath. A discussion in Appendix IV indicates
that the scolution is valid {i. e., convection need not be considered) for a
sheath thickness 75 < 1.4. Figure 10 shows the sheath thickness to be
directly proportional to the sheath voltage.

The current-voltage characteristics for the double parallel-plate
probe may be constructed from the total current-voltage curves such
as the ones shown in Fig. 8. If the lower plate is at a negative
potential with respect to the plasma, it will draw an excess ion current.
The upper plate is then less negative with respect to the plasma and will
draw less ion current. From the continuity of current we have that
Jyg (x} = -J,{x); hence the probe voltage is found by subtracting the volt-
ages in Fig. 8 at J and -J. Figure 11 shows these probe voltages for
several values of the parameters, Te_/T, and S,,.

It takes a much larger voltage to saturate the current when T /T,

is larger than one. In most cases the saturation current may be found

This gives, as T 0,

from Eq. (66) by neglecting

gt

1/3
# w W S (69)

The free-stream electron density is found from Eq. (54}

1/2
n - ] 2x . (70)
e Jg

Knowledge of To /T, is required in Eq. (69) to determine Jg for use in

Eq. (70). For most cases this ratio will be unity; when the ratio is
different than unity it can be evaluated from the slope of the current-
voltage curve at zero current. The saturation voltage increases with
Te_/T,, and the slope of the characteristic curve is a function of

Te,./ T, @5 was seen previously. Using a method given by Chung and

31



AEDC-TR-67-71

Blankenship (Ref. 8) a correlation for Te,, /T, can be found. A straight
line is drawn with a slope equal to the characterlstm curve slope at

J = 0 from the origin until it intersects J4. This voltage is denoted ¢4
in Fig. 11. It is found that ¢ can be related to Te_ /Ty by

== = (71)

which is very nearly equal to the value given in Ref. 8, even though the
saturation currents differ considerably. It should be noted that the
voltage drop in the inviscid core has been neglected in these figures, but
it may not always be negligible.

In order to demonstrate the use of experimental data in Eqs. (69)
and {71}, by assuming a typical flow condition and probe dimensions,
Fig. 12 shows the dimensional current-voltage curve one could expect
to obtain experimentally. The regions of interest are marked on the
curve. Also, to aid in choosing instrumentation for such a probe, the
saturation current is shown as a function of free-stream electron density
in Fig. 13. The parameter ¢ is a function only of the neutral gas flow
variables and Tem/Tw' Conservative estimates of the current density may

be made by letting Tg /T, = 1.0 inc. The condition from Fig. 12 is
sheown for comparison.

Both Eqs. (69) and (70) depend on the ion Schmidt number. This is
a result of the saturation current being dominated by ion diffusion.
Therefore, a knowledge of ion-neutral diffusion ceefficient is required.
The first approximation to the binary diffusion coefficient is given by
Demetriades and Argyropoulos (Ref. 15) as

in

w
[
B o

where Q;, is the effective collision cross section for mementum transfer.
This expression can be written as

=27 TS/2 1 m2 (72)

P Qin sec

D. =2 x 10
in
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where T is in °K; p’is in atm and Qip is in mZ. Not much information
is available on ion-neutral collision cross sections. It is noted {Ref. 16)
that the collision cross sections are approximately three times the
neutral-neutral collision cross sections for most species of air. Also,
the magnitude does not vary too greatly from specie to specie, hence
we take
o~ -17 -1/2

qin 4.36 = 10 T (73)
for the effective collision cross secticn., The square root dependence
on temperature is a result of using inverse fifth-power law interactions
which are characteristic of a simple polarizable particle. Using Egs. (72)
and (73) in the definition of the ion Schmidt gives,

M - g.44 x 20" 2 (74)

pDin T

S

where i is in Kg/m-sec and T is in °K. Figure 14 shows the variation of
Eq. (74) for argon and nitrogen as a function of temperature. The vis-
cosity of the neutral gases was calculated using viscosity data and a
Lennard-Jones potential (Argon in Ref. 17 and Nitrogen in Ref. 18). If
a linear viscosity law is used, consistent with the pu = constant approxi-
maticn, the Schmidt number is a constant. Clearly, the best available
cross section or diffusion data should be used in the probe theory when
interpreting experimental data.

SECTION vII
CONCLUSIONS

An electrostatic probe has been analyzed for a flow regime in which
the sheath is collision dominated. The probe consists of a double
parallel-plate arrangement with the actual current-carrying segments
being far from the leading edge. The aerodynamic boundary layer is in-
cluded in the analysis along with the continuity and energy equations of the
charged particles.

Analytical solutions have been cbtained for this problem. From
these solutions relations have been obtained which allow the determina-
tion of the free-stream electron density and temperature from experi-
mental probe data {see Egs. (70) and (71)).

It is shown that the flow consists of three regions: (1) the inviscid

core where the electric field is very weak and the current is by electron
conduction which serves to maintain continuify between the plates,
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(2) the viscous boundary layer in which the controlling mechanism is
ion diffusion and is similar to ambipolar diffusion except that there is
a finite current flow, and (3} the space-charge sheath across which ion
diffusion and conduction play equal rcles. It is found that this latter
region contains very large electric field gradients and hence a large
part of the voltage drop.

The saturation current is dominated by ion diffusion, and accurate
knowledge of the ion-neutral diffusion coefficients is required for the
particular gas being investigated. If measurements of n,_ and Tem;’TﬂD

can be obtained from other sources, the continum electrostatic probe
could be used in reverse and predict ion-neutral diffusion coefficients.

The range of free-stream electron density for which the theory de-
veloped is applicable is discussed in Appendix IV. Although the validity
of several of the assumptions depends on the particular flow {such as the
ratio of boundary-layer thickness to sheath thickness) it appears that the
probe may be used in the range of 108/cm3 < ne,, < 1012/cm3. These

figures are approximate and depend upon the particular flow conditions
being considered.
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A = 1000
k=10"%
Jy = 2.34
O Exact Numerical Solution (Ref. 5)
Y e —"_:’
L]
NN
/ Eq. 24
"0.01 ﬂu'
R
-0.02
)
-0.03
-0.04
) 0.2 0.4 0.6 0.8 1
€

Fig. 2 Comportison of Eq. (24) and Exact Numerical Solutian
Using J1, A, and k from Ref, §
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APPENDIX 11
SIMPLIFIED SHEATH EQUATIONS

EQUILIBRIUM ELECTRON TEMPERATURE

In Section III it was pointed out that the integrals in Egs. (27) and
{28) could be evaluated in terms of the generalized Kummer functions.
However, in the cases of interest in this paper these integrals may he
simplified and evaluated in terms of much simpler functions. Egquations

(27) and {(28) are:

rEA 2 1/3
- rd
a (1) = - J ¢ et (——3)
342
t i (Ay2+ 1)
Y oA 3
f [-2— + 1] t et dt (11-1)
" 3t
w
Yot
3 -t 3
a (t) = - J, k t e g
t A'yz -1
YA ]
f [_2 + 1] t el 4t (11-2)
3t
tW
where
1 1 -k
rg =7 = )
A 1+ k
_ A
g = -
2J1 {1 + k)
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Since k is 10°2 or less for most conditions,

Ay, + 1
=2z .. 2 .2 (II-3)
3 3(1 + K) 3
A _
i:l(l-k)ﬁl - (11-4)
3 3 V1 4+ k&
A Y P - I (11-5)
3 3(1 + k) 3

Using the above approximations in Eq. (II-1) gives

J 2/3
. -~ 1 _1 L et ~tw _ 3
e 2A ( R ) {[(tw) ]

t ,2/3 1 1
te b [7' (3%) - r (3 tw)]} (11-6)

In Eq. (II-2) we let

A - 4
P2 T _ 345K (11-7)
3 3(1 + k)
A -1 =
72 - _— 2k _ ~ 0 (11-8)
3 3(1 + k)
which gives
J. k -t
1 1 e
e (t) ~— [(=}|= E (t) - E.(t)
e A (R)[g ( i 1 w)

+ ( 1 - et“’)] (11-9)
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where E; (t) is the exponential integral. Making Eqs. (II-6) and (II-9)
satisfy the boundary conditions

a. = 1.0; a =1.0; ¢ =1.0
i e

and using the approximation in Eq. (24) evaluated at § = 0 gives three
equations for the unknowns Jq, Ry. and Rg,.

If the asymptotic expression for large A given in Eq. (23) is used
for R,, Egs. (II-6), (II-9), and (24), respectively, reduce to

I, Q-6
R, = - (11-10)
2A
t
e ¥ ~ 12; k (I1-11)
and
2/3 . 1/3
3J t _
I =24 (%91) w [1 _21 - k.l_] (II-12)
241/3(1 4 B)1/3 31+ k¢t

The equilibrium sheath solution for J1, Ry, and R, comes from solving
Eqs. (II-10), (II-11) and (I[-12). In order to obtain the profiles in Fig. 4
Eqgs. (II-6) and (II-9)} must be used.

It should be pointed out that the Ry found is an approximation, and
the exact value of R at § = 0 can be found from Eq. (20},

J.(1 + k)
Rz=é(_1___1)+32 {11-13)
W A 2 8]

CONSTANT ELECTRON TEMPERATURE

The constant electron temperature case is treated similar to the
equilibrium case. Equations {33} and (34) are:

Aro 5 1/3
ai(t)=—J1t et(___2_3)
3A
t
(A)fz + 1)
f [72A ] - 3 —t
— +1 t e dt (I1-14)
t 3t
w
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AB B,t
ce T o (T
wa (t) = -J; Kt 73 e ( EI2)
t ag, -1 °3t
7 oht —_— Y
f [i+ 1] t 3 e 3 dat
3t
by
Using the approximation
AB, -1
2 << 1
3
and integrating gives
Ay, + 1
Yy 2
- 1/3
2y3 3 t / A;fz £ 3 -tw
a; (£} = - Jy ( z) {(‘“) € -
3A Ay, + 1 t,
|
ﬁ; A;’z + 1
(4?‘—'24—- 2) T
+ e =
_sz r‘3,
[,,(_%_fﬁ t,) -7 (E_ff_'& t)]}
3 3 v 3 3
i
1/3 —(ty, - t
wa_{t) = Jkt-1/3(§-@)/ (ﬁ){l-e}fs(w )
e 1 342 .
J2s
AJ"QBS g & - _
+ [Ei(t) - Ei(tw)]}
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where

The third equation is obtained from Eq. (36) evaluated at ¥ = 0:

=\ _ A 2 2
Iy (l+k)_'(1+mo)+E(Rw -RD)

(II-18)

It should be pointed out that Yo and vy, are not the same as those in the
equilibrium solution but are given in Eq. {30). In general, approxima-
tions of the type made in the equilibrium electron temperature solution
cannot be made in Eqs. (II-18) and (II-17). To obtain the profiles shown

in Fig. 5, Eqs. (II-18) and {II-17) have to be used in the form shown.
Solving Eqs. (II-16) and {II-17), evaluated at £ = 1.0, along with Eq. (1I-18)
completes the constant electron temperature sheath solution.
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AFPENDIX 1l
BOUNDARY-LAYER APPROXIMATIONS

A useful method of scolving boundary-layer equations is demon-
strated in this section. The Blasius equation is
L4 i

f + £ =10 (ITI-1}

where the superscript prime denotes differentiation with the variable 1.
Equsation (III-1) can be integrated formally as

n
) -f tan
f!' = le e © dn + 02 (111-2}

Q

Applying the boundary conditions of f'{0) = 0 and f' = 1,0 as n—» gives

n n
-f £dn
f e © dn

£’ = =2
—f £dn
fe ° dm
o

Here f’ can be evaluated for any assumed f. Since the exponential
rapidly decays as n becomes larger, the integration weights f heavily
near the wall (n = 0). For cases of no slip and no suction and/or blow-
ing at the wall, the velocity profile is almost linear near the wall. This
implies

which in turn gives
fﬂ
2

Substituting this relation intc Eq. (III-3) and integrating gives

N

f

(2)

(I1I-4)
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1
where ¥y (? ,x) is the incomplete gamma function.

In order to check the accuracy of the approximation, differentiate
Fg. {III-4) and evaluate the derivative atn =0

« 1/3
" ]
f (o) = f, -

This gives fi = 0. 480 which compares to f; = 0. 470 for numerical
solutions. Hence, Eq. (III-4) is seen to be a good approximation for
the velocity profile.

Since fy is known for numerical solutions, a better approximation
to f’ may be found by making it satisfy the condition f*'(0) = f@ = 0.470.
Using this condition rather thanf’ = 1,0 as n—w gives

. y ]
£’ -Z_"‘ (5_”)1 > y(i :_W n3) (I11-5)
w

which agrees well with numerical solutions of f’ for all n, differing by
only two percent as n— «. Equation (III-3) implies that

" “ f; 3
f = fw exp - 6_ n

is a good approximation to f” for all n and can be used in obtaining solu-
tions for other quantities in boundary-layer convection-diffusion equa-
tions.

.
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APPENDIX IY
RANGE OF YALIDITY OF THE THEORY

An examination will be made here of the assumptions given in
Section II to show the approximate range of validity for the theory pre-
sented in this report. The three most critical assumptions are exam-
ined in more detail below.

FROZEN FLOW

The flow is assumed to be frozen in ionization and recombination
both while the particles diffuse through the boundary layer and are
convected along the plate, The characteristic times for these two phe-
nomena are approximately the same; therefore we need consider only
the convection along the plate,

The resident time for a particle in the free stream is
T = %— sec (TV-1)

The characteristic reaction for air is the dissociative-recombination of
NO'. The rate coefficient for this is given in Ref. 8 with a resulting
time for recombination of

T = —%  sec (Iv-2)

For argon, three-body recombination normally dominates; the rate
coefficient from Ref. 19 gives,

T 2.94 ( )
_ 12 e IV-3
TreC = 3.01 - 10 —n—-z— Sec
€

oo

For the assumption of frozen flow to be valid we require

T

T < 1

which gives an electron number density limit for air

u 3.5
n <

€ L 10°
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and for argon,

u
n < 1.76 x 1012 /= p 1.47 (IV-5)
em L e

In these equations T is in °K, L is in m, u, is in m/sec, and n,_ is
- . - -}
in particles/m3,

NEGLIGIBLE CONYECTION IN SHEATH

It is assumed that the convective contribution to the current normal
to the wall is negligible in the sheath. If the convective terms are re-
tained in the sheath, Egs. (14) and (15) become (for Te = T):

C
dai dai
—— - Aa,R=J, - 81 f — d¢ -
ac i 1 w of ac (IV-86)
o
¢
da K de
—= + Ae R = Ik -8 (-—i) o f —&4qc (-7
d¢ Ke” d¢
o

Since the maximum contribution of convection occurs at the edge of the
sheath (§ = 1), the convective terms are approximated uging

f” f”
2 2 .2
£~-2n%=2 ¢
2 2
and (see for example Fig. 4)
“,e ¢
The integration then gives
" 3
da . £ n
1 _ AaiR = Jl [ 1 - Sw X e QB] (IV-8)
ag 6 Jy
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and
“ 3
da K f n
5 ha R = 3.k [1 - S, (—1) ¥ 9 (3 ] (IV-9)
d¢ Ke 6 J1E

co

The terms on the left-hand side of Eqs. (IV-8) and (IV-9) are approxi-
mately equzal to unity. A comparison of the convective term from
Eq. {IV-8) with unity gives,

1/3
6
< Iv-10
o ( s ) ( )
w Tw
and from Eq. (IV-9)
K 1/3 1/3
i 6
<< ——
o< () (=)
€ w oW
Ki 1/3 Mj_ 1/6
Since (—) e (-——) > 6
K M
e e

it is seen that convection is never important in determining the flow of
the electrons to the wall. The ion current dominates as saturation is
reached (and the sheath thickens); hence we shall use Eq. (IV-10)} as
the criterion to determine at what point in the boundary-layer convec-
tion may be neglected.

SHEATH THICKNESS LARGER THAN AN ELECTRON-NEUTRAL MEAN FREE PATH

The assumption that the sheath thickness is larger than an electron-
neutral mean free path requires that:

u 1/2 ¥

o> () ay = (=)
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we see that

© ) 1 M (Iv-12)

2vm X Py Qen

e > |

where M is the mass of the neutral particle and Q_ . is the effective

collision cross section for momentum transfer.

en

It is found that all the charge separation is contained well within
the sheath when A 2 1000. This fact is also pointed out by Chung in
Ref. 5. From the definition of A we have

. =sokT0 Az(f_e)z( u_ )
o P

o - 2v X
Using Eq. (52) we let
n 1/3
P ey ﬂ_( Sw)
= m —_ f n
o o
Po Dg 2

2 A o (TV-13)
s ) £’ n 3 (2\: x)

We may now put the criteria developed in the preceding two sections into
Eq. (IV-13) to give the limits on Ng .

For convection to be negligible we find by substituting Eq. (IV-10)
into Eq. (IV-13)

n 61 Sy 273 0 (v-14) v~
em>1.57-10(2—) ( )Tw

For the sheath to be larger than the electron-neutral mean free
path we find by substituting Eq. (IV-12) in Eq. (IV~-13)
3 v x 1/2

"e < 1.16 - 10%0 :""2 ( . ) [argon] (IV-152)

o
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3
033 Po (2‘%,, X) [air] (IV-15b) &~

Tm2 u

n

e < 3.80 -1
o

where p, is an atm and other quantities are in MKS units.

The applicability of the continuum electrostatic flat plate probe to
a given flow can be determined from FEgs, (IV-4), (IV-5), {IV-14) and
(IV-15) taken collectively,
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